M1.B [1] **M2.**C [1] **M3.**B [1] **M4.**A [1] M5. Α [1]

M6. A [1]

M7. A

[1]

С M8.

[1]

С M9.

[1]

M10.(a) (i) mass per sec (= density × vol per sec) =
$$1000 \times 1.4$$
 (1) = $1400 \text{ kg (s}^{-1})$

(ii) loss of
$$E_p$$
 per sec $(=\frac{mgh}{t}) = 1400 \times 9.8 \times 750$ (1)

$$= 1.0 \times 10^{7} \text{ J (s}^{-1}) \text{ (1) (1.03 } \times 10^{7} \text{ J s}^{-1})$$
(allow C.E. for value of mass per sec from (i))
$$(= \frac{\text{power output}}{\text{loss of } E_p \text{ per second}}) = \frac{2.0 \times 10^6}{1.0 \times 10^7} \text{ (1)}$$

= 0.2 (1)

(allow C.E. for value (ii))

6

(b) (i) (use of
$$P = IV$$
 gives) $I_{ms} = \frac{2.0 \times 01^6}{25 \times 10^3}$ (1) = 80 A (1)

Page 3

(ii) power output =
$$(0.95 \times \text{power input}) = 0.95 \times 2.0 \text{ (MW)} = 1.9 \text{ (MW)}$$
 (1)
$$I = \frac{1.9(MW)}{275(kV)} = 6.9 \text{ A (1)}$$

[or I for 100% efficiency
$$\left(=\frac{2\times10^8}{275\times10^3}\right) = 7.3 \text{ (A) (1)}$$

I for 95% efficiency = 95% of 7.3 = 6.9 A

4 [10]

M11. (a) $R = \rho L/A$

C1

 $A = 2.0 \times 10^{-6} \text{ (m}^2\text{) or } \pi (0.8 \times 10^{-3})^2 \text{ seen in equation}$ (condone $\pi (1.6 \times 10^{-3})^2 \text{ or } 8.04 \times 10^{-6} \text{ seen})$

C1

L = 2900 m, 2940 m, 2960 or 3000 m

Α1

3

(b) resistance leads to loss of heat/energy/power or *l*²R loss or voltage drop (across cable)

B1

lower current lowers loss of heat/energy/power or reduces voltage drop

В1

ac can be transformed (to lower transmission current)

В1

[6]

3

M12. (a)	product of flux and number of turns Wb or equivalent	B1 C1	(2)
(b)	changing primary magnetic field due to alternating voltage (applied to primary) varying flux links with secondary induced emf Σ rate of change of flux linkage N_s N_P so less voltage on secondary	B1 B1 C1	(4)
(c)	(i) equation or correct substitution 15.3 V	C1 A1	(2)
	(ii) not just "heating" or "heat loss"	В2	(2)